Strategic Biodiesel Decisions

Rudy Pruszko
Sr. Project Manager
Center for Industrial Research and Service
Iowa State University Extension
Dubuque, Iowa 52001
Phone 563-557-8271 ext 251
Email: rpruszko@iastate.edu
What is Biodiesel?

- Biodiesel is defined as the mono-alkyl ester of fatty acids derived from vegetable oils or animal fats, commonly referred to as B100.
- Biodiesel must meet the specifications of ASTM D6751
- Biodiesel blends are a mixture of Biodiesel with petroleum diesel, commonly referred to as B20, B5, B2.
Transesterification

\[
\begin{align*}
\text{Triglyceride} & \quad \text{Methanol} & \quad \text{Mixture of Fatty Esters} & \quad \text{Glycerin} \\
\text{CH}_2 - \text{O} - \text{C} - \text{R}_1 & \quad \text{CH}_3 - \text{O} - \text{C} - \text{R}_1 & \quad \text{CH}_3 - \text{O} - \text{C} - \text{R}_2 & \quad \text{CH}_2 - \text{OH} \\
\text{CH} - \text{O} - \text{C} - \text{R}_2 + 3 \text{CH}_3\text{OH} & \quad \rightarrow \quad \text{CH}_3 - \text{O} - \text{C} - \text{R}_2 + \text{CH} - \text{OH} \\
\text{CH}_2 - \text{O} - \text{C} - \text{R}_3 & \quad \text{CH}_3 - \text{O} - \text{C} - \text{R}_3 & \quad \text{CH}_2 - \text{OH} \\
\end{align*}
\]
Where you find solutions

Standard Recipe

100 lb + 21.71 lb →
 Oil + Methanol

100.45 lb + 10.40 lb + 10.86 lb
 Biodiesel Glycerol Excess Methanol

Plus 1 lb of NaOH catalyst
Biodiesel Production Capacity

Where you find solutions

Commercial Biodiesel Plants
April 2006

65 Plants

BQ-9000 Accredited Producers
Biodiesel Production Capacity

Plants under construction
April 2006
Biodiesel Production Capacity

• As of April 2006
 – 65 existing production facilities in US
 – Approximately 395 million gal/yr of capacity

• Proposed or planned plants
 – Estimated 714 million gal/yr of capacity

• Total US estimated production capacity by mid 2007 is over 1.1 billion gal/yr
Feedstock Supply

Current US feedstock supply

- 29 billion pounds of vegetable oil
- **12 billion pounds of animal fats**
- 41 billion pounds of total feedstock per year

US Exports of feedstock

- 3.9 billion pounds of total exports
 - Equals approximately 500 million gallons
Feedstock Supply

- US Exports of feedstock
 - Of those exports, only 2.4 billion pounds are low enough in price to make biodiesel profitable
 - Will make 315 million gallons of biodiesel
 - Consist of soybean oil, palm oil, and a few rendered products
Feedstock Supply

• Supply and demand principle
• Meal constraint on additional crush
 – Ethanol industry
 – Export markets
• Competition with food industry
 – Cost differential with food grade
 – Oil is a small part of food product cost
• Oil imports
Why is Feedstock Price Important?

Distribution of Biodiesel Production Cost for 3 mm gpy Plant

- Feedstock: 71.7%
- Chemical: 4.3%
- Energy: 6.4%
- Labor: 5.9%
- Depreciation: 1.6%
- Overhead and Maintenance: 10.2%
Feedstock Strategies

Which feedstock to use?

- Soybean oil
 - Price, lowest cost vegetable oil
 - Cold flow properties
 - Major seed crop in US
 - Local sources
 - Easy to use
 - No pretreatment
Feedstock Strategies

Which feedstock to use?

• Animal Fats
 – Lowest cost feedstock
 – Poor cold flow properties
 – Includes some second use oil
 – Rendered products
 – Possible odor concerns
Feedstock Strategies

Which feedstock to use?

- Determining factors
 - Plant location
 - Feedstock availability and price
 - Biodiesel properties desired
 - Competing biodiesel producers
 - Government incentives
 - Transportation logistics
Feedstock Strategies

Which feedstock to use?

• Important considerations
 – Find feedstock sources early
 – Look for opportunity feedstocks
 – Develop a risk management policy
 – Design flexibility into your plant so that different feedstocks can be used
 – Do feedstock sensitivity calculations
Plant Cost

- Processing plant estimates vs. Complete plant estimates
- Installation Cost + Equipment Cost = Installed Cost
- Installation cost equals 1 ½ to 2 times the equipment cost
- New versus used equipment
Biodiesel Plant Budget Installed Cost

Installed Cost ($)

Capacity (millions of gal/yr)

- 30% FFA
- 10% FFA
- <2% FFA
- <0.1% FFA Modular
- 10% FFA Modular

Where you find solutions
Plant Size Considerations

- Batch plant cost less than a continuous plant
- Batch plant footprint is larger than continuous plant footprint
- Batch can be operated for short periods of time without losing efficiencies
- Continuous plant equipment must have the same flow rate or throughput
- Rule of thumb $1 per gallon of capacity
Plant Size Strategies

What plant size to build?

• Advantages of Large Plants
 - Large plant > 5 million gpy
 - Equipment cost per gallon produced are less as size increases
 - Operator expenses are usually less
 - Volume discounts on chemicals and feedstock
 - Transportation discounts for volume
Plant Size Strategies

What plant size to build?

• Advantages of Small Plants
 - Small plant < or = 5 million gpy
 - Smaller customer base needed
 - Less total feedstock required
 - Lower capital cost: Less capital investment
 - Can be a batch process
 - Capitalize on local and regional markets
 - Lower transportation cost: feedstock/products
Plant Size Strategies

What plant size to build?

• Determining factors
 - Market size and demand
 - Marketing abilities
 - Feedstock supplies
 - Site locations and infrastructure
 - Risk tolerance
 - Capital or financial resources
Plant Size Strategies

What plant size to build?

• Important considerations
 – Don’t discount local market loyalty
 – Don’t only look at the numbers
 – A large plant operating at less than capacity cost more to operate than a small plant running at capacity
 – The last million is always the hardest to raise
Plant Efficiencies and Capacities

- Operating at less than capacity means lower efficiencies therefore higher cost per gallon produced and possible lower quality
- A 30 mm gpy plant at 2/3 capacity is less profitable than a 5 mm gpy plant at capacity
- In order to operate at capacity, higher feedstock cost or lower selling price may be necessary – hence lower profits
Technology & Technology Providers

- Compare apples to apples
- Years in service
- Design vs. design with construction
- Partnership opportunities
- Work load and time line

Where you find solutions
Technology & Technology Providers

• Other services
 – Marketing assistance
 – Fund raising assistance
 – Management assistance

• Number of working plants
• Performance guarantees
• Environmental issues
Technology Strategies

Which technology is best?

- Continuous vs. Batch processing
- Solid catalyst vs. homogeneous catalyst
- Water wash vs. absorbent
- Feedstock pretreatment or soap removal
Technology Strategies

Which technology is best?

• Technology provider dependant
 – Knowledge level
 – Breadth of experience
• Turnkey vs. construction managed
• Skid mounted vs. site erected
Technology Strategies

Which technology is best?

• Determining factors
 – Feedstock consideration
 – Experience level of the technology provider
 – Ability to validate the technology
 – Size of plant to be built
Technology Strategies

Which technology is best?

• Important considerations
 – Financial stability of technology provider
 – Is the technology proven?
 – Use technology providers knowledgeable in all facets of the plant
 – What is your expertise level?
 – Obtain references and visit a plant
Resources

• Biodiesel Workshop, material from the Biodiesel Production, Analytical, and Business workshops in Iowa and Idaho, 2006, http://www.me.iastate.edu/biodiesel

• National Biodiesel Board, http://www.biodiesel.org

• USDA

• CI RAS and Iowa State University
Resources

Available from www.biodieselbasics.com